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Abstract 
Practical experience indicates that the definition of real-

world workflow applications is a complex and error-prone 
process. Existing workflow management systems provide 
the means, in the best case, for very primitive syntactic 
verification, which is not enough to guarantee the overall 
correctness and robustness of workflow applications. The 
paper presents an approach for formal verification of 
workflow schemas (definitions). Workflow behaviour is 
modelled by means of an automata-based method, which 
facilitates exhaustive compositional reachability analysis. 
The workflow behaviour can then be analysed and checked 
for safety and liveness properties. The model generation 
and the analysis procedure are governed by well-defined 
rules that can be fully automated. Therefore, the approach 
is accessible by designers who are not experts in formal 
methods. 
 

1. Introduction 

Workflow Management Systems provide automated 
support for defining and controlling various activities 
(tasks) associated with business processes [1, 2]. A 
Workflow Schema is used to represent the structure of an 
application in terms of tasks as well as temporal and data 
dependencies between tasks. A Workflow Application (or 
just Workflow) is executed by instantiating the 
corresponding workflow schema [3]. 

The aim of providing automated support for business 
processes is to reduce costs and flow times, to improve the 
robustness of the process and to increase productivity and 
quality of service [4, 5]. However, specifying a real-world 
workflow schema is a complex manual process, which is 
prone to errors. Incorrectly specified workflow schemas 
result in erroneous workflow applications, which, in turn, 
may cause problems in the organisation where they are 
deployed. It is crucial to be able to verify the correctness of 
a workflow schema before it becomes operational.  

Many commercial workflow management systems 
provide the means for some basic syntactic verification, 

while a workflow schema is designed. They check, for 
example, for the existence of inputs and outputs in task 
specifications. However, more thorough and rigorous 
analysis is required to ensure that the schema is correct [6, 
7]. For instance, we need to be able to check that the 
workflow eventually terminates, that there are no potential 
deadlocks, or that a certain path of execution is possible.  

Within the C3DS ESPRIT project, we address this issue 
by integrating a workflow definition language with a model 
checking method. The two methods were developed by 
project partners, have been used extensively, and are 
supported by powerful automated tools.  The workflow 
definition language has been recently incorporated in a 
proposal for OMG’s “UML Profile for EDOC” RFP [8, 9]. 
The TRACTA model-checking approach follows a 
compositional approach to exhaustive reachability analysis, 
which has proved to scale well in real-world applications. 
Analysis is performed in a fully automated way with the 
LTSA toolkit [10]. Integration of the two involves a 
mapping of the features of the workflow definition language 
with features of FSP, the specification language of LTSA. 
The mapping is governed by well-defined rules, which 
allow for translations to be performed in an automatic way. 
The FSP model extracted can be used for checking both 
safety and liveness properties. Generic properties of 
workflow schemas can be provided to users as predefined 
options. Moreover, for users that are familiar with model 
checking, the LTSA offers the flexibility of defining 
additional (application-specific) properties, which can also 
be automatically checked.  

The remainder of this paper is organised as follows. 
Section 2 provides an overview of the semantics of our 
workflow definition notation, outlines the requirements for 
verification in this context and introduces the TRACTA 
approach. Sections 3 and 4 form the core of the paper. 
Section 3 proposes a complete mapping of all workflow 
schema elements to LTSs. Section 4 discusses the classes of 
safety properties that can be verified using the TRACTA 
techniques and the LTSA toolkit. In both sections, the 
theoretical concepts are illustrated by means of a simple 
example: a workflow managing travel arrangements. The 



paper is concluded (section 5) with a critical discussion of 
the presented approach and directions of future work.  

2. Background 

2.1. Defining Workflow Schemas 

A workflow schema represents the structure of a business 
process as a collection of tasks and their dependencies. A 
task is an application-specific unit of activity. There can be 
two types of dependencies between tasks: 1) notification 
dependencies indicating temporal (causal) relations; 2) 
dataflow dependencies indicating that a task requires some 
input (data) from another task. In the following, we present 
the principles of our notation for workflow schema 
definition [11, 12]. 

A task can start in one of several initial states and can 
terminate in one of several output states. Thus, a task is 
modelled as having a set of input sets and a set of output 
sets. Each such set consists of a (possibly empty) set of data 
objects. In Figure 1, task t3 is represented as having three 
input sets I1, I2, and I3, and two output sets O1 and O2.  

 
t3 

I1 

I3 

I2 

O1 

O2 

s1 

s2 

s5 

s6 

s7 

s8 t2 

s3 

n1 

i3 

i1 

i2 

i4 

i5 

t1 

n2 

s9 

s4 o1 

o2 

o3 

 

Figure 1. A workflow schema defining inter-task 
dependencies. 

The execution of a task is triggered by the availability of an 
input set; only the first available input set will trigger the 
task. For an input set to be available, all its dataflow and 
notification dependencies must be satisfied. For example, in 
Figure 1, input set I1 of task t3 requires three dependencies 
to be satisfied: objects i1, i2 and i3 must become available 
(dataflow dependencies). On the other hand, input set I2 
requires three dependencies to be satisfied: object i4 must 
become available and two notifications, n1 and n2, must be 
signalled (notifications are modelled as data-less input 
objects). All these dependencies (data and notification) are 
logically AND’ed for an input set to be available. A given 
input can be obtained from more than one source (e.g., two 
for object i1 in set I1 of task t3), a logical OR of sources. If 
multiple input sources become available simultaneously, 
then one source is selected deterministically by the 
execution environment. 

The data dependencies of an input or output set are 
represented by the data objects of that set. They are 
therefore part of the definition of the task that contains the 
set. On the other hand, notifications are causal dependencies 
that depend on the context a task is instantiated in. The 
number of incoming notifications of a set (that are logically 
AND’ed with its data objects) and the alternative sources of 
each of them (logically OR’ed inputs) are defined when a 
task is interconnected with other tasks in some context. 

To allow workflow applications to be designed in a 
hierarchical way, tasks can be composite: collections of 
instances of other, inter-dependent tasks. Therefore a task 
can be either primitive (implemented by some application 
service) or composite (consists of other primitive or 
composite tasks). Figure 2 illustrates an example of a 
composite task called TripOrganiser. The task provides 
the schema definition for a workflow that makes trip 
arrangements. 
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Figure 2. An example of workflow schema. 

2.2. Requirements for workflow verification 

Our experience with building large workflow systems 
indicates that it is important for the designer to be able to 
apply a rigorous verification method on the workflow 
schema and argue formally about the correctness of the 
resulting workflow applications. In this context, we have 
identified a number of requirements to be satisfied by any 
such verification method: 

1. Have a solid mathematical foundation and allow for 
rigorous and formal analysis of both safety and liveness 
properties.  

2. Perform exhaustive analysis at design-time (of the 
workflow schema) as well as interactive simulation of 
the workflow model. 

3. Employ algorithms that are computationally efficient in 
order to be applicable to real-world systems. These 
algorithms should be supported by automated tools. 

4. Follow a compositional approach in order to enable 
incremental analysis while the system is designed and to 
support re-use of specifications in multiple contexts. 

5. Generate meaningful diagnostic information, in the form 
of execution traces, to indicate potential errors to the 
designer. 



6. Use a comprehensible graphical representation for 
humans and also an equivalent well-defined and space-
efficient formal notation for usage with the tools. 

7. Be understandable and accessible by users who have no 
special expertise in the area of modelling and formal 
methods. 

2.3. The TRACTA approach 

The TRACTA approach has been extensively used for 
modelling and analysing concurrent and distributed systems 
[13, 14]. It is based on the use of Labelled Transition 
Systems (LTS) for modelling the behaviour of system 
components and for expressing system properties. 

In order to integrate analysis with other activities of 
software development, TRACTA uses a compositional 
approach to modelling, by following the phases of 
hierarchical system design. Behaviour is attached to the 
software architecture by specifying a labelled transition 
system for each primitive component in the hierarchy 
(primitive is a system component which cannot be expanded 
to sub-components, at least for the sake of analysis). 
Following the terminology of traditional process algebras, 
the LTS of a primitive component is equivalent to a finite-
state interacting process. An LTS contains all the reachable 
states and executable transitions (triggered by actions) of a 
process. The behaviour of composite system components is 
defined as the composition of the LTSs of their constituent 
components.  

TRACTA exhaustively explores the reachable states of an 
LTS, a technique known as reachability analysis. The main 
disadvantage of this technique is state explosion. That is, 
the exponential relation between the system state-space and 
the number of its constituent components. TRACTA takes 
advantage of the hierarchical structure of the system in 
order to address this problem. As the system behaviour is 
composed in a bottom-up manner, internal details (actions) 
of a subsystem’s behaviour are hidden and the subsystem is 
minimised, at intermediate stages of the analysis. In general, 
only a subset of the actions in a subsystem’s LTS are of 
interest to external systems (processes) that have to interact 
with it.  

Explicit representation of LTSs becomes impractical for 
systems with more that a few states. For this reason, 
TRACTA uses a simple process algebra notation called FSP 
(stands for Finite State Process) to specify the behaviour of 
components in a system [10]. FSP is not a different way of 
modelling a system. It is a specification language with well-
defined semantics in terms of LTSs, which provides a 
concise way for describing LTSs. Each FSP expression can 
be mapped onto a finite LTS and vice versa.  

TRACTA is supported by the LTSA software toolkit, 
which provides for automatic composition, analysis, 
minimisation, animation and graphical display of system 
models expressed in FSP. 

Primitive system components 

Primitive system components are defined as finite-state 
processes in FSP using action prefix “->”, choice “|” and 
recursion. If x is an action and P a process, then (x->P) 
describes a process that initially engages in the action x and 
then behaves exactly as described in P. If x and y are 
actions, then (x->P|y->Q) describes a process which 
initially engages in either of the actions x or y, and the 
subsequent behaviour is described by P or Q, respectively. 
The definition of a primitive component may use an 
auxiliary process (used as a means for modular FSP 
specifications).  

FSP uses an interface operator ‘@’, which specifies 
(using prefix matching) the set of action labels which are 
visible at the interface of the component and thus may be 
shared (synchronisation points – used for interaction) with 
other components. All other actions are “hidden” and will 
appear as silent “τ” (tau) actions during analysis, if they do 
not disappear during minimisation of the component. When 
it is more concise to describe what actions are hidden rather 
than which actions remain observable, the hiding operator 
“\” may be used instead. 

Composite system components 

Composite-component processes are defined in terms of 
other, non-auxiliary processes. Their identifiers are prefixed 
with “||”. The process of a composite component does not 
define additional behaviour; it is simply obtained as the 
parallel composition of instances of the processes it is made 
of. Process instances are denoted as “instance-name:type-
name”. The LTS of the instance is identical to that of the 
type, with action labels prefixed with the instance name. 
The instance name is not necessary if there is just one 
instance of a process in a given context. Composition 
expressions use parallel composition (||) together with 
operators such as re-labelling (/), action hiding (\) or 
interface (@). Communication occurs when interfaces are 
bound together. It is modelled by means of synchronisation 
of shared actions (the remaining actions are interleaved). 
Actions that correspond to bound interfaces are re-labelled 
to a common name in order to be synchronised when 
behaviours are composed. Re-label specifications are of the 
form “new-label/old-label”.  

More details of the TRACTA approach and the FSP 
specification language will become clear during the 
discussion of workflow modelling and analysis, in the 
following sections. 

3. Workflow modelling 

The model of each workflow schema consists of two 
parts. A generic part, which models elements that are 
common to every schema, such as input/output interfaces 
and dataflow/notification dependencies between tasks. An 
application-specific part, which models the actual tasks in 



the schema and their inter-dependencies. In the rest of this 
section, the models are presented in the form of FSP 
specifications and, when appropriate, as LTS diagrams 
produced by the LTSA tool. 

3.1. Task interfaces 

A task interacts with its environment through its 
interface sets. Interface sets consist of zero or more data 
objects (representing dataflow dependencies) and inbound 
and outbound notifications (representing notification 
dependencies). Interface sets model the common behaviour 
of input and output sets of tasks. 

�� An interface set is “available”, if all its dataflow and 
notification dependencies are satisfied. When an 
interface set is available, then all of its constituent 
objects and outbound notifications are also available. 

An interface set is modelled as the parallel composition 
of a set of objects and inbound and outbound notifications.  

An interface object can perform input and output 
actions, reflecting the fact that the object receives and 
outputs data, respectively. An interface becomes available 
when all its constituent objects are available (a logical AND 
operation). To enforce this, all objects in a set need to 
synchronise on a common action available. An object can 
only perform available after performing action input. 
Therefore, the behaviour of an object with identification ID 
(to uniquely identify it in the set) is modelled as follows: 

Object (ID=1) = (input[ID] -> available  

                    -> output[ID] -> STOP). 

Action available is also used to make sure that all 
inbound notifications are received before an interface set 
becomes available and also, that outbound notifications are 
provided only after the interface set becomes available: 

InNotification (ID=1) =  

      (inNotify[ID] -> available -> STOP). 

OutNotification =  

      (available -> outNotify -> STOP). 

An interface produces at most one outbound notification 
(which can be bound to more than one task). Thus, no 
identifier is required for this type of notifications. A process 
Iface_Problem is introduced to model a transition to an 
error state, if an interface instance is specified with more 
than one outbound notification. If an interface set does not 
contain any objects and has no notification dependencies, it 
is unconditionally available, as modelled by process 
Default. 

Iface_Problem = (erroneous -> ERROR). 

Default = (available -> STOP). 

|| Iface (Objs=1, INotfs=1, ONotfs=1) =  

 if (ONotfs >= 2) then  

   Iface_Problem  

 else (if (Objs > 0) then  

  (forall [i:1..Objs] Object(i))  

 || if (INotfs > 0) then  

    (forall [i:1..INotfs]  

     InNotification(i))  

 || if (ONotfs > 0) then  

   OutNotification 

 || if (Objs==0 && INotfs==0  

           && ONotfs==0) then  

Default ). 

Figure 3 illustrates the LTS of an interface with one 
object, one inbound and one outbound notification. The 
interface becomes available only after both inNotify.1 
and input.1 have been performed (in any order). 
Following action available, actions output.1 and 
outNotify can also be performed. 

 input.1 

inNotify.1 input.1 available 

output.1 

outNotify output.1 

outNotify 

inNotify.1 

0 1 2 3 4 5 6 7 

 
Figure 3: LTS of an interface set, with one object, one 

in- and one out- notification. 

3.2. Primitive tasks 

The main entities of a primitive task that need to be 
modelled are its interfaces, qualified as input and output 
sets. They are modelled as interfaces that have zero 
notifications. A task’s notification dependencies are context 
dependent. In the general case, a task may be instantiated in 
more than one context. Therefore, in our model, 
notifications are added when a task is introduced in a 
context (composite task). 

minimal  

|| AbsInputSet (Objs=1) =  

   (Iface(Objs, 0, 0)) @ {available, input}. 

 

minimal 

|| AbsOutputSet (Objs=1) =  

   (Iface(Objs, 0, 0)) @ {available, output}. 



Information that is concerned with the outputs of input 
sets and the inputs of output sets is encapsulated within the 
model of primitive tasks. The only actions kept explicitly 
visible are the ones prefixed with labels input and 
available for input sets, and output and available for 
output sets. The prefix minimal is added to the processes to 
make sure that, during the generation of the model, our 
tools will not only hide the actions that are not made visible, 
but will also minimise the corresponding LTSs. The 
advantage of minimisation is that it results in a more 
compact but behaviourally equivalent model.  

A primitive task’s behaviour is dictated by two rules: 

�� The execution of a task starts as soon as one of its 
input sets is available. 

�� When the execution of a task completes, exactly one of 
its output sets is available. 

The two rules also capture the causal dependency 
between a task’s input and output sets. This behaviour 
pattern is common to all primitive tasks and is modelled by 
the process AbsTaskImpl. This process also models the 
fact that, even if more than one input set is available, just 
one is selected by the internal task behaviour and exactly 
one output is produced. 

AbsTaskImpl (InSets=1, OutSets=1) =  

  (in_ready[i:1..InSets] -> Execute), 
Execute = (out_ready[o:1..OutSets] -> STOP). 

A specific primitive task is then defined as the parallel 
composition of instances of its input and output sets with an 
instance of the above default implementation process. For 
example, the primitive task Planner of Figure 2 is 
modelled as shown below. The renaming reflects the 
bindings of the task’s interfaces to AbsTaskImpl. 

|| Planner = ( AbsTaskImpl(1, 2)  

   || data:AbsInputSet(1)  
   || abort:AbsOutputSet(0)  
   || details:AbsOutputSet(2)  
   ) 
  / { data.available/in_ready[1],  
    abort.available/out_ready[1], 
    details.available/out_ready[2] }. 

3.3. Composite tasks 

Composite tasks are constructed out of a number of 
constituent task (sub-task) instances. Sub-tasks are either 
primitive or composite tasks. A composite task is modelled 
as the parallel composition of its interfaces (input/output 
sets) and its constituent task instances. The data objects of a 
composite task’s “external” interfaces are bound to data 
objects of its constituent tasks. Moreover, there may be 
notification dependencies between external and internal 
(sub-task) interfaces.  

However, incoming notification dependencies to the 
composite’s own input sets and outgoing notification 
dependencies from the composite’s output sets are not 
known in this context. The aim is again to achieve 
reusability of the composite task model. This principle is 
captured in the specifications of the external input and 
output sets of composite tasks: an InputSet is an interface 
set with no input notifications and an OutputSet is an 
interface set with no output notifications.  

|| InputSet (Objs=1, ONotfs=1) =   

  if (Objs ==0 && ONotfs==0) then 

   Iface_Problem  

  else (Iface(Objs, 0, ONotfs)). 

 

|| OutputSet (Objs=1, INotfs=1) =   

  if (Objs ==0 && INotfs==0) then 

   Iface_Problem  

  else (Iface(Objs, INotfs, 0)).  

The conditional specification in the above model states 
that: 1) an external input set must have at least one data 
object or one outgoing notification; 2) an external output set 
must have at least one data object or at least one incoming 
notification. Process Iface_Problem is again used to 
model a transition to an error state, if either of the above 
conditions is not satisfied. For example, composite task 
TripOrganiser (of Figure 2) has one external input and 
two external output sets. 

In the case of composite tasks, we have again to model 
the fact that exactly one input set is selected even if more 
than one is available and exactly one output set is enabled 
when the task terminates. The later is modelled by processes 
InSelector and OutSelector:  

InSelector (InSets=1) = 

 (in_ready[i:1..InSets] -> STOP). 

OutSelector (OutSets=1)= 

 (out_ready[i:1..OutSets] -> STOP). 

These processes are used in the model of a composite 
task to guarantee single set selection, as shown in Figure 4. 
Unlike AbsTaskImpl (see section 3.2) these processes do 
not impose the causal dependency between a task’s input 
and output sets. For a composite task, this dependency must 
be ensured by its internal implementation. 

The main part of a composite task’s model consists of 
the parallel composition of instances of its constituent tasks. 
For example, task TripOrganiser consists of instances of 
tasks Planner, FlightSrch, CarRental and 
Reservation. Within the context of a composite task, a 
task instance may need to receive and provide notifications 
to its environment. Respectively, each sub-task instance 
may need to be composed with processes of type 
InNotification(ID) or OutNotification, that apply to 
its interface sets. For example, TripOrganiser consists of 
the following processes: 



TripOrganiser 

data 

abort 

itinerary 

 

|| TripOrganiser = ( 

        InSelector(1) || OutSelector(2) 
        || data:InputSet(1, 0)  
        || abort:OutputSet(0, 1)  
        || itinerary:OutputSet(1, 0) 
        . . . 
   )/{ /* mappings to Selectors... */ 
  data.available/in_ready[1],  
  abort.available/out_ready[1], 
  itinerary.available/out_ready[2],... 
}. 

Figure 4. “External” input and output sets of a 
composite component. 

|| TripOrganiser = ( . . . 

  /* Constituent tasks ... */ 

  || plan:Planner     
  || plan.abort:OutNotification 
  || fs:FlightSrch    
  || fs.abort:OutNotification 
  || cr:CarRental     
  || cr.abort:OutNotification 
  || res:Reservation  
  || res.abort:OutNotification 
 ) / {  . . .  }. 

In this example, the abort output sets of all sub-tasks 
are sources for notification dependencies, in the context of 
TripOrganiser. The naming of a notification process 
ensures that its available action is synchronised with the 
available action of the corresponding interface set. So, both 
action available of interface abort for task 
plan:Planner and action available of process 
plan.abort:OutNotification are named plan.abort. 
available, and thus need to be executed synchronously.  

Finally, we need to model the bindings (expressing both 
dataflow and notification dependencies) between interface 
sets of composite tasks. As discussed, bindings are 
modelled by means of appropriate re-labellings. For 
example, the following captures dataflow dependencies 
between external and internal interfaces for task 
TripOrganiser: 

data.output[1]/plan.data.input[1],  
itinerary.input[1]/res.booking.output[1],...  

The following captures dataflow dependencies between 
internal interfaces for this task: 

plan.details.output[1]/fs.details.input[1],  

plan.details.output[2]/cr.details.input[1], 
fs.flight.output[1]/res.details.input[1], 
cr.car.output[1]/res.details.input[2], ... 
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abort 
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plan.abort 
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fs.abort 
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|| TripOrganiser = ( . . . ) 

/ {  {plan.abort.outNotify,          
   fs.abort.outNotify,  
      cr.abort.outNotify,  
      res.abort.outNotify} 
    /abort.inNotify[1], 

     ... }. 

Figure 5. Modelling alternative input sources. 

Note, that a given set or object may have more than one 
alternative input sources. Availability of any of the input 
sources (logical OR) is enough to enable the set or object, 
accordingly. Alternative dependency sources are modelled 
by means of relational relabelling. In our example, the 
abort output set of TripOrganiser can be enabled by a 
number of alternative sources: plan.abort, fs.abort, 
cr.abort and res.abort. The relational relabelling of 
Figure 5 states that a transition labelled 
abort.inNotify[1] in the LTS of the “external” output 
set abort is, now, performed when any of the other three 
transitions occurs. The corresponding transformation of the 
LTS is shown in Figure 6. 

abort.inNotify[1]

 

 

plan.abort.outNotify 
fs.abort.outNotify 
cr.abort.outNotify 
res.abort.outNotify 

 

Figure 6. Relational relabelling used to model 
alternative input sources. 

4. Workflow analysis 

This section describes how to customise generic LTS 
analysis techniques for the domain of workflow systems.  



4.1. Interactive simulation 

A practical first step in checking a process is to simulate 
its behaviour. Simulation is performed as a user-controlled 
animation of the process. For composite processes, the LTS 
of their behaviour is not composed first. The LTSs of the 
components of the process are used to determine the current 
state of the process, as well as which actions are enabled at 
that state. The enabled actions are the “ticked” actions in 
the “animator window”. When the user selects one of these 
actions, the process transits to the corresponding next state. 
The LTSA tool highlights the transitions on the LTS 
diagrams of the component processes and presents the 
corresponding system trace. 

Figure 7 illustrates the interactive simulation of an 
instance of task FlightSrch. We can see that after the 
input to the task has been provided, its input set details 
becomes available. Action details.available is 
performed synchronously by processes details: 

AbsInputSet(1) and AbsTaskImpl(1,2). Since this is a 
primitive task, the outputs become available, as soon as an 
input set is ready. In this case, when both actions 
abort.available and flight.available are activated, 
users may select which output to execute, according to the 
scenario they wish to check. 

Interactive simulation provides an intuitive way for the 
system designers to experiment with different execution 
scenarios. However, in the general case, interactive 
simulation cannot establish the correctness of a real system, 
since designers cannot simulate all its possible execution 
scenarios. For that reason, techniques are required for 
rigorously checking the models of workflow systems. 

 

AbsTaskImpl(1,2)

details.available {abort, flight}.available

0 1 2
 

details:AbsInputSet(1)

details.input[1] details.available

0 1 2
 

Figure 7. Interactive simulation of task FlightSrch. 

4.2. Properties 

The model-checking techniques associated with TRACTA 
can be used to check a workflow system exhaustively, 
against both generic and domain-specific properties. When 
a property is violated, our tools provide a counter-example, 
an execution trace that violates the property. 

Generic safety properties: deadlock 

LTSA identifies deadlock states in the LTS of a process, 
as states with no outgoing transitions. Reachability of such 
states is checked by default for every process in the system. 
This is so because LTSA has been mainly aimed at reactive 
models that exhibit non-terminating behaviours. A typical 
way of dealing with terminating executions is to add a 
looping transition to each valid terminating state of a 
system. For workflow tasks that are expected to terminate, 
we provide a generic process called ValidTask- 

Termination, which models the fact that a valid 
terminating state of a task is one where some output of the 
task has been enabled:  

ValidTaskTermination = (out_enabled -> TERM), 

TERM = (term_ok -> TERM). 
 

When composed with a task that we wish to check for 
deadlock, this process will add looping transitions to the 
valid terminating states of the task. Thus, only real deadlock 
states will have no outgoing transitions in the resulting LTS.  

|| Complete_TripOrganiser =  

  ( TripOrganiser  
 || organiser:ValidTaskTermination) 
 /{ {abort.available,itinerary.available} 
   /organiser.out_enabled}. 

Here, an instance of ValidTaskTermination is 
composed with an instance of TripOrganiser. Relational 
relabelling is applied, so that the ValidTaskTermination 
process transits to its terminating state whenever any one of 
the outputs of TripOrganiser is enabled. Thus, valid 
terminating states of process Complete_TripOrganiser 
will have looping transitions labelled with action 
organiser.term_ok. Indeed, the LTSA tool does not 
detect any deadlocks in Complete_TripOrganiser: 

States Composed: 76 Transitions: 136 in 0ms 
   No deadlocks/errors 

Assume that another version of the Planner was used in 
the definition of TripOrganiser, as depicted in Figure 2. 
In this case, Planner has two alternative output sets, one 
for a flight booking and another for a car booking; now, 
LTSA does detect a deadlock in process 
Complete_TripOrganiser, as shown in the trace below. 
Intuitively, the input set of the Reservation task will never 
be enabled because its two objects indirectly depend on the 
two alternative outputs of Planner. 

Trace to DEADLOCK: 



 data.input.1 
 data.available 
 data.output.1 
 plan.data.available 
 plan.details1.available 
 plan.details1.output.1 
 fs.details.available 
 fs.flight.available 
 fs.flight.output.1 

plan: 
Planner 

fs: 
FlightSrch

cr: 
CarRental 

res: 
Reservation 

TripOrganiser 

Figure 8. Composite task with deadlock. 

According to our approach, the fact that a task has no 
deadlocks implies that it eventually terminates. Therefore, 
checking safety in terms of absence of deadlock also 
guarantees the main liveness property of termination, which 
is of interest in this context. Specific liveness-checking 
techniques are required [14], when the behaviour model of 
the resources used for the execution of each primitive task 
is also introduced in the system model. The analysis of 
workflow schemas, in the presence of resource models, is an 
ongoing research issue as discussed in section 5. 

Other generic safety properties 

In TRACTA, safety property violations are identified by 
the reachability of a special "error state", represented as 
state -1 in LTSs. The error state has special semantics [13]. 
First, it has no outgoing transitions; there is no meaning in 
exploring a system after a safety violation has occurred. 
Moreover, in the context of parallel composition, local 
errors are propagated globally. That is, if any component of 
a global state is an error state, then this global state is also 
an error state. Safety properties are specified as FSP 
primitive processes, whose definition is prefixed with the 
keyword "property". A fundamental requirement to be 
satisfied by all composite tasks is: 

�� The output produced by a task causally depends on the 
input that triggers the task execution.  

It is expressed by means of a safety property: 

property Task_InOut_Relation =  

 ( input_ready -> output_enable -> STOP ). 

This property has an alphabet of two actions: 
{input_ready, output_enable}. It asserts that action 
output_enable can occur only after input_ready and 
none of these actions is allowed to occur again. In the 

corresponding LTS, any trace from the property’s alphabet 
that does not satisfy the property leads to the error state. 
Property process Task_InOut_Relation is composed with 
process Complete_TripOrganiser in order to check for 
potential violations of the property in the non-blocking 
version of this task. Figure 9 illustrates the LTS for property 
Task_InOut_Relation, after relational relabelling is 
applied. It specifies, that if any one of the input sets (just 
data in our example) is enabled, then (and only then) any 
one of the output sets may be enabled by the corresponding 
task. 

Task_InOut_Relation 

data.available 

{abort, itinerary}.available 

data.available 

{abort, itinerary}.available 

{abort, data, itinerary}.available 

-1 0 1 2 

 

Figure 9. LTS of property Task_InOut_Relation. 

|| Check_InOut_TripOrganiser =  

  ( Complete_TripOrganiser  
  || Task_InOut_Relation )  
 / { data.available / input_ready, 
       {abort.available, itinerary.available} 
   / output_enable }.  

Another typical requirement for any workflow schema is: 

�� For each task, there must exist at least one execution of 
the workflow where this task is triggered.  

To check this for some task T, we introduce a property 
PathsToSubtask to the model, which states that no input 
set of T ever becomes ready. If LTSA returns a 
counterexample, it means that indeed, there exists some 
execution where T is triggered, as desired. If LTSA detects 
no violations, it means that T never plays any role in the 
context of the specific workflow.  

property PathsToSubtask = STOP + {reachable}. 

Here, action reachable (explicitly added to the alphabet 
of the property) expresses the fact that a task is triggered. In 
the case of a task, reachable is relationally relabelled to 
the set of ready actions corresponding to the task's input 
sets. For example, we proceed as follows to check that task 
res:Reservation is triggered in at least one execution of 
Complete_TripOrganiser:  

|| ExistPathsToPlan =  

   (Complete_TripOrganiser || PathsToSubtask) 
 / {res.details.available/reachable}.  

The LTSA tool returns the following result: 



Trace to property violation in 
PathsToSubtask: 

 data.input.1 
 data.ready 
 data.output.1 

  plan.data.ready 

The counterexample gives the prefix of an execution of 
Complete_TripOrganiser where task 
res:Reservation is triggered.  

Domain-specific safety properties 

In addition to checking generic properties of workflows, 
our techniques can be used for properties that refer to the 
particular workflow under analysis. Examples of such 
properties include checking that: a certain sub-task is 
triggered only after a number of other tasks are executed in 
a specific order; if any sub-tasks aborts, then the only 
possible outcome of the composite task is also abort; no 
sub-task is triggered subsequently to any abort action in the 
composite task. A detailed discussion of domain-specific 
safety properties as well as liveness properties can be found 
in [15]. 

4.3. Modularity and Abstraction 

After checking thoroughly that a task satisfies its 
requirements, the behaviour of the task may be abstracted 
before re-using it in some other context. The only actions 
that need to be visible by the context of a task are actions 
related to its interfaces. Specifically, the interface of an 
abstracted task consists of the input actions of its input sets 
and the output actions of its output sets. The available 
actions of input sets and output sets must also be exposed, 
in order to be able to add notifications to and from the task 
when it is introduced in a context. The LTS of the task is 
then minimised. For example, the Complete_ 

TripOrganiser task is abstracted as follows. 
Minimisation reduces the size of the LTS of the reservation 
task from 76 down to 9 states. 

minimal 

|| AbstractTripOrganiser =  

 (TripOrganiser )  
  @ { data, abort, itinerary }. 

5. Discussion and conclusions 

The paper has proposed the modelling of workflow 
schemas (using a popular notation) by means of Labelled 
Transition Systems, as they are supported by the TRACTA 
approach. TRACTA satisfies the fundamental requirements 
that have been set in section 2.2. It is a mature method that 
has been extensively used for model checking of complex 
concurrent and distributed systems. It uses a solid automata-
based theory to allow exhaustive analysis on the static 
model of a system, at design time.  

The TRACTA approach is fully automated within the 
LTSA toolkit. The algorithms employed for process 

composition, action hiding and minimisation are 
computationally efficient and scale well for real-world 
workflow schemas. In addition, LTSA provides a graphical 
representation of LTSs and an animation facility for 
simulating the execution of the model. Diagnostic 
information is presented in the form of counterexamples: 
traces of execution that lead to violation of a desired 
property. All these facilitate the use of the method by 
designers that are not experts in formal methods. In fact, 
with an automated production of the model from the 
workflow schema definition (which is currently under 
development), the workflow designers will not have to write 
any FSP code. Generic properties could also be provided as 
predefined options. Therefore, designers would only need to 
express additional application-specific properties that they 
may wish to analyse.  

Our plans also involve facilitating the understanding of 
the counterexamples returned by the LTSA tool, by 
providing designers with custom animations on graphical 
displays of the workflows. We have already experimented 
extensively with domain-specific animations, and intend to 
apply our experience to workflows [16]. 

The feature of TRACTA that makes it particularly suitable 
for behaviour analysis of workflow schemas is 
compositionality. TRACTA traditionally follows a 
compositional approach to modelling and analysis, in order 
to address the state explosion problem, which is inherent to 
all exhaustive reachability analysis techniques. We have 
exploited this feature, by making the models of tasks 
context independent and re-usable. Therefore, designers can 
check the model of their system in an incremental manner, 
while the system is designed. Design errors can be spotted 
early in the design and right in the components (tasks) 
where they occur.  

The lack of compositionality is the main weakness of the 
Woflan system, according to its designers [17]. Woflan is a 
verification tool that uses a special type of Petri-nets to 
model and analyse the behaviour of workflow processes. 
Errors in the model are reported in the form of “behaviour 
error messages”, similar to our “counter-example traces”. 
The main advantage of the system is the theoretical 
robustness of the Petri-nets and the clear representation of 
workflow state by token-based nets. However, the system 
lacks a means for visual representation of the model. In 
addition, Woflan can only handle systems with just up to 
105 states. LTSA can handle LTSs with more than 106 
states. Such LTSs typically represent systems that are 
originally several orders of magnitude larger (before 
minimisation is applied during the various levels of 
composition). 

Another approach for workflow verification has been 
proposed by the Praxis project [18]. However, they focus 
on graph analysis techniques to identify structural conflicts 
in workflow schemas. The approach is bound to a specific 



workflow notation and depends on special-purpose elements 
in the notation (and-split, or-split, etc). It does not cater for 
analysis against general safety properties and cannot be 
easily adapted to other workflow notations. 

There are a number of directions we are planning to 
follow in order to extend the work presented in this paper. 
The proposed modelling approach has been illustrated by 
means of a specific workflow notation. This notation is part 
of a proposal to OMG’s “UML Profile for EDOC” RFP [9]. 
In any case, the mapping is generic and can be easily 
adapted for other approaches to workflow scheme 
specification. To justify this claim, we are planning 
mappings for other (proprietary) notations used by 
commercial workflow management systems. In addition, the 
proposed mapping has to be extended with a generic model 
of recursive tasks (tasks that can trigger new instances of 
their own type), a common pattern in business processes. 

This paper introduces an approach for modelling and 
analysis of workflow schemas, irrespectively of the 
environment in which schemas are instantiated and 
executed. Such models can be enriched with the behaviour 
of system resources used for the enactment of workflow 
instances. Analysis of the extended models can then ensure 
that workflow specifications are consistent with the 
constraints set by the execution environment. We are 
currently investigating what are the required abstractions for 
modelling system resources in this setting.  
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